by Jian-Jun Fu^a), Hui-Zi Jin^a), Yun-Heng Shen^b), Wei-Dong Zhang^{*a})^b), Wen-Zheng Xu^a), Qi Zeng^a), and Shi-Kai Yan^a)

 ^a) School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
^b) Department of Phytochemistry, Second Military Medical University, Shanghai 200433, P. R. China (phone: +86-21-25070386; fax: +86-21-25070386; e-mail: wdzhangy@hotmail.com)

Two novel monoterpene alkaloid dimers, named argutanes A and B (1 and 2, resp.), together with the known alkaloid boschniakine (3), were isolated from the roots of *Incarvillea arguta*. The structures were elucidated on the basis of 1D- and 2D-NMR, as well as HR-ESI-MS data.

Introduction. – *Incarvillea arguta* (Bignoniaceae) meanly grows in the southwest area of China at altitudes of 1400-2700 m. It has been widely used as a herbal medicine of Yi nationality (known as '*Wabuyou*') to treat hepatitis and diarrhea in China [1]. Previous phytochemical studies on the genus *Incarvillea* have revealed that it is a rich source of monoterpene alkaloids [2–9]. A number of ceramides, triterpenes [10], monoterpene alkaloids [11], and flavones [12] have been reported from *I. arguta*. Further chemical studies of this plant led us to isolate two novel monoterpene alkaloid dimers, *i.e.*, **1** and **2**, of the boschniakine type (*Fig. 1*). Up to now, no boschniakine-type alkaloid dimers have been reported. Here, we describe the isolation and structural elucidation of these alkaloids.

Results and Discussion. – The dried roots of *I. arguta* were extracted with 80% EtOH four times at room temperature. After removal of solvent, the extract was suspended in H_2O and acidified to pH 2 with 20% H_2SO_4 , and filtered. The filtrate was basified to pH 10 with NaHCO₃ and then extracted with CHCl₃. The aqueous phase was adjusted to pH 7 with 20% H_2SO_4 and partitioned successively with petroleum ether, AcOEt, and BuOH. After removal of the solvent, the petroleum ether extract was further purified by repeated column chromatography over silica gel and *Sephadex*

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

LH-20 to yield compounds 1-3. The structures of 1 and 2 were elucidated mainly by NMR spectroscopy, including 1D- and 2D-NMR experiments (¹H,¹H-COSY, NOESY, HMQC, and HMBC), in combination with mass spectrometry (MS).

Compound 1 was obtained as yellow oil. The molecular formula was determined as $C_{20}H_{22}N_2O_2$ by HR-ESI-MS (*m*/*z* 345.1559 ([*M*+Na]⁺ $C_{20}H_{22}N_2NaO_2^+$; calc. 345.1579)). The ¹³C-NMR spectrum of **1** (*Table*) displayed 20 ¹³C signals, and, combined with DEPT, revealed ¹³C signals for two Me, three CH₂, nine CH groups, and six quaternary C-atoms. Comparison of the spectral data of **1** with those of the known compound **3** indicated that **1** is a dimer of a boschniakine-type alkaloid [13-15]. The ¹³C-NMR signals of **1** disclosed the presence of two sets of boschniakine-type alkaloid moieties¹) (δ (C) 149.9 (C(2)), 146.1 (C(3)), 154.1 (C(4)), 129.0 (C(5)), 150.8 (C(6)), 35.5 (C(7)), 39.1 (C(8)), 48.7 (C(9)), 193.1 (C(10)), and 19.0 (C(11)), and (δ (C) 142.9 (C(2')), 146.1 (C(3')), 155.1 (C(4')), 127.1 (C(5')), 144.9 (C(6')), 37.7 (C(7')), 34.4(C(8')), 30.3 (C(9')), 73.0 (C(10')), and 19.5 (C(11'))) (Table). The CHO group $(\delta(H))$ 10.21 (s); $\delta(C)$ 193.1 (CH)) was observed in the ¹H- and ¹³C-NMR spectrum. A signal of an oxygenated methine group at $\delta(H)$ 4.75 (d, J = 8.6 Hz) correlated with the ¹³C signal at $\delta(C)$ 73.0 (C(10')) in the HMQC spectrum. The HMBC cross-peaks between H-C(10'), and C(4), C(8), C(9), C(4'), C(5'), and C(6') suggested that these two boschniakine-type alkaloids are connected by a bond between C(9) and C(10') (Fig. 2) leading to the constitutional formula 1.

Fig. 2. Key HMBC correlations of 1

The relative configuration of **1** was deduced from coupling constants, and the analysis of NOESY experiment as depicted on a 3D structure generated from the molecular modeling (ChemOffice2006, Chem3D Ultra 10.0) using MM2 force field calculations for energy minimization [16] (*Fig. 3*). In the NOESY, the cross-peaks observed between the H-atom pairs $H_a-C(7)/H_a-C(8)$, $H_a-C(8)/H-C(10')$, $H_a-C(7)/H-C(10')$, $H_a-(7')/H_a-C(8')$, $H_a-C(8')/H_a-C(9')$, and $H_a-C(9')/H-C(10')$ indicated that H-C(10') is α -oriented. The large coupling constant (*J*(9 β , 10') = 8.6 Hz) observed between H–C(9) and H–C(10') was β -oriented. Thus, from the above data, the structure of **1** was elucidated as (7*R**)-5-{(*R**)-[(7*R**)-6,7-dihydro-7-methyl-5*H*-cyclopenta[*c*]pyridin-4-yl]hydroxymethyl}-6,7-dihydro-7-methyl-5*H*-cyclopenta[*c*]pyridin-4-carbaldehyde (absolute configuration unknown), and named argutane A.

¹⁾ Arbitrary C-atom numbering as indicated in Fig. 1

Position	1		2	
	δ (H)	δ (C)	δ (H)	δ (C)
H-C(2)	8.64 (s)	149.9	8.65 (s)	150.5
C(3)		146.1		128.4
C(4)		154.1		152.4
C(5)		129.0		147.5
H-C(6)	8.89 (s)	150.8	8.86 (s)	153.6
H-C(7)	3.40 - 3.43 (m)	35.5	3.49 - 3.53 (m)	36.2
$CH_{2}(8)$	2.11 - 2.17 (m), 1.69 - 1.74 (m)	39.1	2.43 - 2.49(m), 1.57 - 1.63(m)	36.7
H-C(9)	4.18 (t, J = 8.6)	48.7	4.08 (dd, J = 3.4, 3.2)	48.2
H - C(10)	10.21 (s)	193.1	10.05 (s)	191.8
Me(11)	1.32 (d, J(11,7) = 6.9)	19.0	1.33 (d, J = 6.9)	19.7
H-C(2')	8.34 (s)	142.9	8.33 (s)	140.0
C(3')		146.1		146.3
C(4')		155.1		146.7
C(5')		127.1		124.6
H-C(6')	8.45 (s)	144.9	8.63 (s)	142.9
H-C(7')	3.41 - 3.45 (m)	37.7	3.29 - 3.33 (m)	37.7
$CH_2(8')$	1.65 - 1.68(m), 2.40 - 2.42(m)	34.4	1.69 - 1.73 (m), $2.35 - 2.42$ (m)	34.0
$CH_{2}(9')$	3.05 - 3.11 (m), $2.73 - 2.77$ (m)	30.3	3.11 - 3.17(m), 3.01 - 3.06(m)	30.5
H - C(10')	4.75 (d, J = 8.6)	73.0	5.28 (d, J = 3.4)	71.6
Me(11')	1.34 (d, J = 6.9)	19.5	1.35 (d, J = 6.9)	19.9

Table. ¹*H*- and ¹³*C*-*NMR Data of* **1** and **2**. At 400 and 100 MHz, respectively, in $CDCl_3$; δ in ppm, *J* in Hz. Arbitrary C-atom numbering according to *Fig.* 1.

Fig. 3. Key NOESY correlations of 1

Compound **2** was obtained as yellow oil. The molecular formula was determined as $C_{20}H_{22}N_2O_2$ by HR-ESI-MS (m/z 323.1769 ([M + H]⁺; calc. 323.1760)), which showed the same molecular formula as **1**. The ¹H- and ¹³C-NMR spectral data of **2** were similar to those of **1** (*Table*). The main difference between **2** and **1** was a small coupling constant observed between H–C(9) (δ (H) 4.08 (dd = 3.4, 3.2 Hz)) and H–C(10') (δ (H) 5.28 (d, J = 3.4 Hz)). Furthermore, no interaction between H_a–C(7) and H–C(10') was observed in the NOESY experiment. These results indicated that the

OH group at C(10') was α -oriented. Thus, the structure of **2** was elucidated as (7*S**)-5-{(*S**)-[(7*S**)-6,7-dihydro-7-methyl-5*H*-cyclopenta[*c*]pyridin-4-yl]hydroxymethyl}-6,7-dihydro-7-methyl-5*H*-cyclopenta[*c*]pyridine-4-carbaldehyde.

Compound **3** (*Fig. 4*) was obtained as yellow oil. It was identified as boschniakine by comparing its NMR and specific-rotation data with those reported in the literature [13-15].

Fig. 4. Structure of compound (+)-(R)-3

Experimental Part

General. TLC: HSG F_{254} Silica-gel plates (10–40 µm; Yantai Huiyou, China). Column chromatography (CC): Silica gel (200–300 mesh; Yantai Jiangyou, China), silica gel H (10–40 µm; Qingdao Marine Chemical Ltd., China), and Sephadex LH-20 (Pharmacia Co. Ltd.). Dragendroff's reagent was used for alkaloid detection. Optical rotations: Perkin-Elmer 341 polarimeter at r.t. NMR Spectra: in CDCl₃ on Bruker AVANCE¹¹ 400 NMR, for ¹H-NMR at 400 MHz and ¹³C-NMR at 100 MHz, resp. ESI- and HR-ESI-TOF-MS: Varian MAT-212 and Q-Tof micro YA019 spectrometers.

Plant Material. The roots of *I. arguta* were collected from Anning, Yunnan Province, China, in May 2006, and identified by Prof. *Bao-kang Huang* and *Han-chen Zheng*, Department of Pharmacognosy, Second Military Medical University. The voucher specimens (LTM20060514) have been deposited with the Herbarium of School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.

Extraction and Isolation. The dried roots (24.9 kg) of *I. arguta* were chopped and percolated with 80% EtOH (4 × 50 l) at r.t. until the compounds of interest were exhaustively extracted. The solvent was removed by evaporation under reduced pressure to give a crude extract (5.2 kg). The extract was dissolved in 15 l of H₂O to form a suspension and acidified to pH 2 with 20% H₂SO₄, and filtered. The filtrate was basified to pH 10 with sat. NaHCO₃ soln. and then extracted repeatedly with CHCl₃. The org. fractions were combined and evaporated under vacuum to yield the CHCl₃ extract (93 g). Then, the aq. phase was adjusted to pH 7 with 20% H₂SO₄ and extracted successively with petroleum ether, AcOEt, and BuOH at r.t. Removal of the solvents from the extract (272 g), and the BuOH extract (630 g). The petroleum-ether extract (107 g) was chromatographed over silica gel eluting with a gradient of increasing AcOEt (0–100%) in petroleum ether to give nine fractions. *Fr. 9* was purified by silica-gel CC with petroleum ether and AcOEt to yield compounds **1** (3 mg) and **2** (5 mg). *Fr. 3* was purified by *Sephadex LH-20* eluting with CH₂Cl₂/MeOH 1:1 to yield compound **3** (6.5 mg).

Argutane $A = (7R^*)-5-(R^*)-(7R^*)-6,7-Dihydro-7-methyl-5H-cyclopenta[c]pyrdidin-4-yl]hydroxy$ methyl]-6,7-dihydro-7-methyl-5H-cyclopenta[c]pyrdine-4-carbaldehyde;**1** $): Yellow oil. <math>[\alpha]_{D}^{25} = +25.4$ (c = 0.055, MeOH). ¹H- and ¹³C-NMR: see *Table*. ESI-MS: 323.3 ($[M + H]^+$). HR-ESI-TOF-MS: 345.1559 ($[M + Na]^+$, $C_{20}H_{22}N_2NaO_2^+$; calc. 345.1579).

Argutane B (=(7S*)-5-{(S*)-[(7S*)-6,7-Dihydro-7-methyl-5H-cyclopenta[c]pyridin-4-yl]hydroxymethyl]-6,7-dihydro-7-methyl-5H-cyclopenta[c]pyridine-4-carbaldehyde; **2**): Yellow oil. $[a]_{D}^{25} = +21.0$ (c = 0.025, MeOH). ¹H- and ¹³C-NMR: see Table. ESI-MS: 323.2 ($[M + H]^+$). HR-ESI-TOF-MS: 323.1769 ($[M + H]^+$, C₂₀H₂₃N₂O₂⁺; calc. 323.1760).

Boschniakine (3). Yellow oil. $[a]_{25}^{25} = +13.0 \ (c = 0.150, MeOH)$. ¹H-NMR¹): 10.22 (*s*, H–C(10)); 8.61 (*s*, H–C(2)); 8.83 (*s*, H–C(6)); 3.35–3.44 (*m*, H–C(9)); 3.30–3.34 (*m*, H–C(7)); 3.13–3.18 (*m*, H–C(9)); 2.40–2.46 (*m*, H–C(8)); 1.67–1.74 (*m*, H–C(8)); 1.36 (*d*, J=6.9, H–C(11)) [13–15]. ¹³C-NMR (CDCl₃)¹): 191.64 (C(10)); 155.04 (C(4)); 150.96 (C(6)); 148.92 (C(2)); 146.12 (C(3)); 128.06 (C(5)); 38.40 (C(8)); 37.20 (C(7)); 30.77 (C(9)); 19.87 (C(11)). ESI-MS: 162.1 ([*M*+H]⁺). The research was supported by program for *Changjiang Scholars and Innovative Research Team in University* (PCSIRT) and partially supported by the *Scientific Foundation of Shanghai China* (NO. 03QMH1414, 04DZ19842, 04DZ19856, 04DZ19857, 05DZ19733, 06DZ19717, and 06DZ19005).

REFERENCES

- [1] G. D. Li, Chin. Herb. Med. 1986, 17, 272.
- [2] M. Nakamura, Y. M. Chi, W. M. Yan, W. M. Yan, Y. Nakasugi, T. Yoshizawa, N. Irino, F. Hashimoto, J. Kinjo, T. Nohara, S. Sakarada, J. Nat. Prod. 1999, 62, 1293.
- [3] W. Chen, Y. M. Shen, J. C. Xu, Chin. Chem. Lett. 2003, 14, 385.
- [4] Y. M. Chi, M. Nakamura, X. Y. Zhao, T. Yoshizawa, W. M. Yan, F. Hashimoto, J. Kinjo, T. Nohara, *Chem. Pharm. Bull.* 2005, 53, 1178.
- [5] M. Nakamura, K. Kido, J. Kinjo, T. Nohara, Chem. Pharm. Bull. 2000, 48, 1826.
- [6] Y. M. Chi, F. Hashimoto, W. M. Yan, T. Nohara, Phytochemistry 1995, 40, 353.
- [7] Y. M. Chi, M. Nakamura, T. Yoshizawa, X. Y. Zhao, W. M. Yan, F. Hashimoto, J. Kinjo, T. Nohara, S. Sakurda, *Biol. Pharm. Bull.* 2005, 28, 1989.
- [8] Y. M. Chi, F. Hashimoto, W. M. Yan, T. Nohara, Phytochemistry 1997, 46, 763.
- [9] M. Nakamura, Y. M. Chi, J. Kinjo, W. M. Yan, T. Nohara, Phytochemistry 1999, 51, 595.
- [10] Y. G. Luo, J. H. Yi, B. G. Li, G. L. Zhang, Lipids 2004, 39, 907.
- [11] T. F. Ji, X. Z. Feng, Chin. Tradit. Herb Drug 2002, 33, 967.
- [12] Z. W. Yu, H. Y. Zhu, X. S. Yang, Q. Y. Sun, X. J. Hao, Chin. J. Chin. Mater. Med. 2005, 30, 1335.
- [13] J. W. McCoy, F. R. Stermitz, J. Nat. Prod. 1983, 46, 902.
- [14] T. Sakan, F. Murai, Y. Hayashi, Y. Honda, T. Shono, M. Nakajima, M. Kato, *Tetrahedron* 1967, 23, 4635.
- [15] G. A. Cordell, The Alkaloids 1977, 16, 431
- [16] G. Ren, Z. M. Yu, Y. L. Chen, S. H. Wu, C. X. Fu, Nat. Prod. Res. 2007, 21, 223.

Received June 19, 2007